Cao Yi

正弦定理 Law of Sines

返回目录

设$\triangle ABC$的三个角$\angle A$, $\angle B$和$\angle C$对应的三条边是a, b和c, R是三角形的外接圆的半径,则

$\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R$

证明

如下图,直线AO过圆心O交圆周于D,

https://www.geogebra.org/calculator/yxnzppqb

根据圆周角的性质

$\angle ACB = \angle ADB$, $\angle ABD = \dfrac{\pi}{2}$

$\therefore \vert AB \vert = \vert AD \vert \sin{\angle ADB}=\vert AD \vert \sin{\angle ACB}=2R\sin{\angle ACB}$

即 $c=2R\sin{C}$

$\therefore \dfrac{c}{\sin C} = 2R$

同理可证

$\therefore \dfrac{a}{\sin A} = 2R$

$\therefore \dfrac{b}{\sin B} = 2R$

$\therefore \dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R$


参考